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Over the past 5 years, the team focused on two main topics: (i) the study of the genetic and 
phenotypic diversity at a population level, i.e. population genomic surveys (ii) the 
characterization of the genetic basis and architecture of complex traits using yeast as a 
model organism. We have made important progress in our field and I only detail the 
significant results below. 

Understanding how genetic variation among individuals leads to the phenotypic diversity 
observed within a species is a long-standing and fundamental goal in biology. Advances in 
whole genome sequencing have allowed genome-wide association studies (GWAS) to 
correlate genetic variants with various traits, including many human diseases. However, 
while thousands of causal variants have been identified, they often only explain a fraction of 
the observed phenotypic variance. While there are a number of possible explanations for this 
“missing heritability”, rare variants, genetic interactions and structural variants are likely to be 
a significant culprit. During this reporting period, we took advantage of lessons learned from 
systematic functional genomic analyses in S. cerevisiae and we use it to explore the origin of 
the missing heritability from population data. In parallel we built new tools that allow us to 
perform large scale functional genomics in diverse strain backgrounds. 

Species-wide exploration of the genetic and phenotypic landscapes 

To lay the foundation of the exploration of the genetic complexity of traits, we first completely 
sequenced and phenotyped a large collection of 1,011 yeast isolates, coming from diverse 
ecological niches across the world on plates containing different stressors. The generated 
dataset revealed an undescribed evolutionary history as well as the driving forces of genome 
evolution, and has provided insights into the genotype–phenotype relationship. 



To dissect the genetic basis of complex traits, we developed an efficient, standardized and 
quantitative high-throughput screening strategy based on an automated robotic plateform 
(Singer RoToR HDA robot) to replicate the set of strains onto various media (more than 50 
growth conditions). In total, we determined and analyzed 34,956 phenotypic measurements 
covering a large number of traits providing a comprehensive analysis of their inheritance 
patterns. The combination of these two datasets allowed to perform genome-wide 
association studies. We performed mixed-model association and detected 35 variants 
significantly associated with 14 conditions, with an enrichment and high association scores 
for Copy Number Variants (22 CNVs vs. 13 SNPs). In addition, some of the detected variants 
are linked to variable ORFs, which are not present in the reference genome. Phenotypic 
variance explained was estimated by running a new association with a similarity matrix 
containing the significantly associated markers. For five of the tested traits, the phenotypic 
variation explained is surprisingly greater than 25%. In fact, CNVs explained larger 
proportions of trait variance compared to SNPs, with a median of 36.8% and 4.49% of the 
variance explained, respectively. Our genome-wide association analyses, including an 
exhaustive catalog of genome content and CNVs present in the 1,011 genomes, highlighted 
the overall importance of these genetic variants on the phenotypic diversity. 

Interestingly, the difference between the estimated genome-wide heritability and explained 
phenotypic variance gives an overview of the extent of missing heritability. Many SNPs are 
present at low frequencies, which echoes observations previously made in human GWAS 
and raised the question of whether rare SNPs have an important role in modulating the 
phenotypic landscape. 

Rare variants contribute significantly to quantitative trait variation 

Based on the genomic and phenotypic data from the collection of 1,011 S. cerevisiae 
isolates, a total of 55 isolates that are diploid, homozygous, genetically diverse and present 
unbiased population structure have been selected. In total, we created 3,025 hybrids, 
representing 2,970 heterozygous hybrids with a unique parental combination and 55 
homozygous hybrids. We screened the entire set of isolates, and hybrids for high-resolution 
quantification of mitotic growth ability across 53 conditions, using the automated, 
standardized robotic platform. The conditions included different carbon sources and chemical 
compounds impacting various physiological and cellular responses such as membrane and 
protein stability, signal transduction, sterol biosynthesis, transcription, translation as well as 
osmotic and oxidative stress. This phenotyping step led to the characterization of more than 
160,00 hybrid/trait combinations. 

Our dataset gave us the opportunity to have a species-wide view of the relative contributions 
of additive and non-additive components to overall phenotypic variation in our large sample 
of 3,025 hybrids. Separation of variance components of phenotypic variation is a key point in 
the understanding of genetic architecture of traits and a potential source of the missing 
heritability. In addition, because we tested many traits across a large population, we 
highlighted interesting variations between conditions as well as isolates, suggesting the 
presence of rare functional variants and potential expressivity cases.  

Because all the 55 isolates used in the diallel cross were completely sequenced, we 
examined the genetic basis of traits across a large panel of traits using GWAS. The main 
point about using a diallel cross design was that we can use the redundancy of the haplotype 
which is intrinsic of the pairwise crosses to our advantage. Indeed, with only 34 base 
genomes, we could generate in silico the 595 genomes corresponding to a half pairwise 
matrix of 561 hybrids with 34 homozygous. Each parental genome is present 34 times hence 
creating haplotype mixing across the matrix. This high level of haplotype shuffling and 
repetition gives the advantage of offering allele overrepresentation compared to the use of a 
population with the same number of independent individuals. Minor allele frequency (MAF) 
will be fundamentally changed in a diallel compared to the species level because of the 
smaller number of parents involved. In our diallel panel, out of the total 31,632 SNPs 
retained, 3.5% (1,128) which had a MAF < 5% in the 1,011 S. cerevisiae genomes happen to 



surpass this threshold in the diallel panel and thus are now detectable, going up to a MAF of 
32%. Surprisingly, 12.1% of the significantly associated SNPs also surpassed this threshold 
meaning that they could not have been detected by a classical GWAS approach. Altogether, 
our results have major implications for our understanding of the genetic architecture of traits 
in the context of unexplained heritability. They clearly highlight the extensive role of low-
frequency and rare variants on the phenotypic variation at the population level. 

Global picture of inheritance patterns and the genetic complexity of traits 

We then took advantage of the diallel panel to assess the overall genetic complexity of traits 
and the prevalence of phenotypic expressity at a population-scale. In this context, we first 
selected a subset of the large diallel hybrid panel in order to have 190 unique hybrids coming 
from 20 natural isolates representative of the S. cerevisiae genetic diversity. For each of 
these hybrids, a large progeny of 160 individuals (corresponding to 40 full tetrads) was 
obtained, leading to a total of 30,400 offspring individuals. Their mitotic growth has been 
assessed on 40 growth conditions inducing various cellular stress. 

The main objective of this work has been to infer complexity level of traits at a population 
scale and assess its dynamic across multiple genetic backgrounds. To do so, we conducted 
a large-scale phenotyping of the whole panel of 30,400 haploid progeny coming from 190 
hybrids. Overall, more than three million phenotypic measurements were performed and 
grouped for each cross and condition (trait) to obtain 7,600 phenotypic distributions of 
haploid progenies i.e. one distribution for each cross/trait combination. Manually inferring the 
complexity level for each of the cross/trait combination would be tedious and error prone. To 
help us in this task, we based our analysis on a constructed decision tree to classify 
distributions into different inheritance categories based on their underlying genetic 
complexity. Yet, the first step of this process was the determination of unimodality vs. 
bimodality of the distribution. This distinction is far from trivial and required to be assessed in 
a very specific manner. To do so, we used a machine learning algorithm, more precisely, we 
build a random forest classifier. 

We classified the distributions in one of three complexity level: monogenic, oligogenic and 
complex. Overall, 80.3% of the considered distributions displayed inheritance patterns 
corresponding to a complex inheritance pattern. In the meantime, 11.2% appear as 
monogenic and only 4% as oligogenic. The remaining 4.5% failed to be sorted into one of the 
previous categories for various reasons, either the parents could not be confidently attributed 
to one cluster or the tetrad segregation phenotype could not result in a confident 
classification. These results confirm the fact that inheritance patterns are mainly complex but 
also that in a non-negligible number of cases, one gene is actually responsible for most of 
the observed genetic variance. However, this overview can be completed by the fact that this 
repartition of the complexity is highly dependent on the condition considered. Indeed, 
extensive variation in the complexity repartition can be observed in the 40 conditions 
explored here. When further dissecting the 153 distributions corresponding to an oligogenic 
inheritance, we highlighted several types of digenic interaction. We detected 87 cases of 
recessive epistasis. In 66 cross/trait combinations, modifier gene suggesting the presence of 
a suppressor have been identified. 

Overall, we were able to assess the complexity level of traits at a species-wide level. We also 
highlighted the prevalence of expressivity with most of the followed variants displaying 
departure from monogenic inheritance patterns. Finally, this works lays the ground for a more 
complete and in detail exploration of variants displaying different levels of expressivity by 
dissecting the genetic basis of the observed cases. This dissection is the next step and will 
allow to have a better insight into the phenotypic expressivity landscape. 
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research institutes to talk about the research enabled by IUF. 
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This project and the preliminary results we obtained allowed to access to 3 new fundings: 

2019-2023 ANR - Projet BrettAdapt, Partner, 270 k€ 
Populational and multi-dimensional survey of the evolution, impacts and 
consequences of polyploidization in a yeast model 
 

2019-2023 ANR - Projet RecombFun, Partner, 240 k€ 
Partner Evolution of the recombinational landscape and functional patterns across 
yeast species. 
 

2018-2023 ERC (European Research Council) Consolidator, Coordinator, 1999 k€ 
Inheritance, expressivity and epistasis hidden behind the phenotypic landscape of 
natural populations 
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